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ABSTRACT

The DFT-based maximum likelihood method (MLM) for

frequency estimation of complex sinusoids as proposed in [1,21

is extended to treat the case of real data. Improvements on

estimation precision and computation efficiency are obtained by

imposing an equal-frequency constraint on the pair of complex

sinusoids which corresponds to a real sinusoid and by utilizing

a single-step interpolation in-conjunction with a coarse finite

search over the DFT data for the maximum of the likelihood

functon. Simulation results demonstrate these improvements.
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I. INTRODUCTION

The maximum-likelihood (ML) method for frequency

estimation of sinusoids in noise was first proposed in [11 andJ

extended in [2,3]. it has been demonstrated that this method

is often an efficient estimator and superior to some other

approaches [1,3]. In [1], a single-tone complex sinusoid in

the discrete form was treated. The frequency of the sinusoid

was identified as the one which maximizes the magnitude of the

Fourier transform of the discrete signal. It was obtained by

first searching coarsely over the DFT spectrum and then

refining the estimate with the cosine iteration algorithm.

This method was extended to handle multiple tones in 12) where

the coarse search was performed in a frequency space with

dimension equal to the number of complex sinusoids.

The ML method for the complex data can be used in two

ways to treat real data without any modification. one way is

to regard each real sinusoid as a pair of complex ones with

frequencies equal in magnitude and opposite in sign. In doing

so, the dimension of the search space is thus doubled and, as a

consequence, the computation cost would increase

significantly. Furthermore, the estimation precision would

also degrade because the pair of frequency estimates would not

be necessary equal to each other in magnitude, especially in

the presence of noise or in the case of very low frequency
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(W+iO).

The other way is to first generate an "analytic"

(complex -valued) signal for the given real-valued signal using

the Hilbert transform [4). The difficulty with this approach

is that, for a short discrete signal, the Hilbert transform

could not produce a well -approximated complex sinusoid from

each real one and it would distort the noise structure.

In this paper we present a refined ML method for

frequency estimation of real sinusoids in which the dimension

of search space is kept as the number of real sinusoids and the

fine search is carried out using a single-step interpolation

which requires little extra computation. simulation results

show that this refinement can improve the estimation precision

and computation efficiency.
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II. THE METHOD

A. Derivation

We assume that the observed signal {Yn, nf0,..N-1}

contains M real sinusoids corrupted by additive noise wn.

M
Yn am sin (am n+em) + wn n=0,1,..,N-1 (1)

m=1

where the real positive amplitudes fami, the phases {em}

and the frequencies {oml are fixed but unknown parameters and

{wnj are identical and independent Gaussian distributions

with zero mean and variance Ow. Since

sin o = (eJ0-e-J0)/2j

(1) can be rewritten in the vector-matrix form as

y= (P P') + w (2)

where = (Y0,-'-,YN-)t.

w- =(w 0,...,wN _1)t.

_ = (a 1,..,M)t, m='(am/2j)eJs m

PNxM = {Pnm}, Pnmejnwm .

and the superscripts "t" and "'" denote matrix transpose and
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complex conjugate respectively. By leting =(.S,) and S=(PP')

(2) can be further reduced to

y - S B + w (3)

Note that in the above formulation, each real sinusoid is

decomposed into a pair of complex ones whose frequencies are

equal in magnitude.

The ML method estimates the unknown parameters by

maximizing the likelihood function which is a strictly

increasing function of the quadratic form

010(s) = -(Y-S) t (-S8) (4)

where w_ = (U1'''m)t.

By solving aQ1/30=O for $ ,(_3 - (S*S) - S*y), and substituting

it back into (4) followed by dropping the constant term -yt y we

have

_ = (ytS) (S*S)-1(S*y) (5)

or

I* P* P* --
02((A,= (Y t PY XtIp) (6)

pt P i ,

where the asterisk ("*") denotes conjugate transpose.
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Now letting

d-x1 1N (P*Y)

1

AMXN= N (P*P)

B (p~p,)MxM N

and inverting the partioned matrix, we have

Q2(w) = 2N {d* R d + Re [d tT dj} (7)

where R = (A-B(At)-lB')-l

and T = -(At) - I B'R

It is worthwhile to point out that the component of d, dm is

equal to

d(w) N- -jn (8)N(= = ! Yne
n=O

evaluated at w=w and the entries of A and B, a and b , arem mn mn

are equal to

1N-1 N-iw N-1 ejW n = sin(Nw/2) -j A-)1W
N =O N sin (w/2) (9)

evalued at w-w=m-W n and w-=Om+W n respectively. So Q2 (w) can be
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computed using d(w) and p(W) only and the frequency estimate w

is the w which maximizes this quantity. Also note that d(w) is

the DFT value of the observed signal {Ynl at w and p(w) is

the Dirichlet kernel associated with the rectangular window.

In fact P(W) also measures the interference between two

spectral lines separated by w. A plot of p(w) for N=16, 32 and

64 is shown in Fig. 1.

Now let us consider some special cases. For the case

of M=I ( a single real sinusoid), Q 2(_) can be written ex-

plicitly as

Q(W1) = 2NII(d(w,) 12 _Retd 2(w, )p' (2w1)i1/(1-Ip(2wj) 12) (10)

Note that the interference term p(2wl) between the positive

and negative spectral lines of the real sinusoid appears in the

expression. In the limiting case wl=O, p=1

and 02=Id(w=O) 1 2 .

Suppose w1 - w2 
- wM" If w, is large enough so that

the negative spectral lines associated with the real sinusoids

do not interfere with the positive ones then B=O and Q2 re-

duces to

Q2 (wi) = 2Nd*A-d (11)

This is exactly the same formula as Eq. (51) of (21 for M
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Fig. 1. p(w) vs w for N=16, 32 and 64.
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complex sinusoids except the constant factor 2. Therefore,

under this condition, the frequency estimates of M real

sinusoids can be obtained by regarding them as M complex

sinusoids with positive frequencies.

From (11) it is also clear that the corresponding

formula for one and two complex sinusoids are, after dropping

the factor 2,

=Q2 1 NId( 1)12  (12a)

and

(12b)

11 ~w1 12 I( 2)12-2Re(d(wl) d'(w 2 )P(W 2-w' 1 ))j

respectively. Note that if w= -2 1 than (12b) reduces to (10)

as expected.

B. Algorithm

To find the frequency estimate w, using either (10)

or (11) we first perform, as proposed in [1-21, a finite search

in M nested do-loops for the maximum of Q2(w) over a qM

lattice when Q : {2nk/K,ku0,...K-1 and K>N}. Empirically

speaking, K=2N or 4N is enough as long as I/K is comparable to

the lowest frequency in the signal . The required {d(w),cen)}

8
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and {p( ), c during the finite search can be fetched from

the precomputed (using the FFT) and prestored tables. This

course estimate u. is then refined by using a single-step

interpolation (i.e. one-iteration Newton's method) to give the

final estimate

where . (gradient) = ;Q2/a- and H(Hessian) = 49t/ are

evaluted at . numerically (based on the central differences

[5]) using values of Q2(o) already computed in the finite

search. If Q 2 (w)<Q 2 (w) then . is taken as .. It is found

that this simple interpolation can eliminate the lengthy

iterations and the associated convergence problems and yet

provide a satisfactory precision.

When M is large it will be difficult to carry out the

search at one time because of the large search space nM.

Fortunately, in many cases, M' (<M) independent (non-interfer-

ing) and significant (detectable) intervals with length Q' < Q

can be identified from the DFT spectrum of the data,

fjd()j,eqj, each of which contains one single or a small

number of blurred spectral lines and these intervals can be

treated individually in much smaller space using either (7) or

(11) depending upon their distances from a.=O.
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III. SIMULATION RESULTS

Three examples are used here to test the estimation

precision and computation efficiency of the proposed ML

method. The first two have been utilized in other frequency

estimators [6,7]. The computer simulation results for these

two examples are compared with the published data. In the fol-

lowing the simulation conditions for each example are specified

in terms of the observation model, the number of given samples,

(N), the number of DFT values used in the search (K), the

number of Monte-Carlo simulations (MC) and the signal-to-noise

ratio which is defined as SNR =10 log (1/2, 2 )

Example 1: yn = sin(.5rn +.5w) + wn , N=32

This example was used in [6] where the covariance and modified

covariance methods of the "maximum entropy" (ME) spectral

estimator were studied. The simulation conditions are MC=1000,

SNR=37 dB and K-64. The best performances, in terms of

estimation standard derviations, of the two ME methods as

extracted from Fig. 2 of [61 are .53x10 -4 Hz and .47xi0 - 4 Hz.

They are outperformed by the ML method where the standard

deviation is .36x10- 4 Hz.

Example 2: yn= sin(.1,n) + wn, N=25

10
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This example was used in (7] where the instrumental variable

method (IVM) was proposed for estimating frquencies of real

sinusoids. The simulation conditions are MC=200, K=64 and SNR

=22.2, 12.2 and 7 dB. The comparison is given in Table I.

Both Eq. (10) and Eq. (12b) are used. In the latter case, the

real sinusoid is regarded as a pair of complex sinusoids and

the actual frequency estimate is taken as the average of the

magnitudes of the two estimated frequencies based on (12b).

From Table I, it is clear that the ML method is

superior to the IVM and its estimation precision approaches to

the Cramer-Rao bound (CRB)*[I]. Although the estimation

precisions obtained by using (10) and (12b) are comparable, the

required computing times are quite different. On a Amdhal 470

machine, each run takes .4050x10 - 2 seconds using (10) and .1026

seconds (25 times longer) using (12b).

Example 3: yn = sin(.05n + w/4) + w n

N=16

SNR=7,5 and 0 dB.

This example is intended to compare the performances of using

Eq 1I0) and Eq. (12b) in the cases of low SNR's and strong

interference between the positive and the negative spectral

lines of the real sinusoid. The interference is 23% in this

*The CRB is a lower bound on the estimation variance of any
unbiased estimator.
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example. Table II gives the comparison. Undoubtedly, the

proposed ML method (Eq. (10)) for frequency estimation of real

sinusoid is much more precise than the one (Eq. (12b)) which

is adapted from the ML method originally designed for complex

data. From Table II also note that the estimation becomes

biased at very low SNR, e.g., 0 dB.
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TABLE I

Comparison of IVM, MLM with Eq. (10) and MLM
with (Eq. 12b) for frequency estimation precision of a
real sinusoid in noise. The true frequency is .05 Hz

Each entry in column 2,3, and 4 means meand ±SD in
units of Hz. See example 2.

Method IVM [6] MLM MLM 1/2
Eq. (10) Eq. (12b) (CRB)

SNR dB

.5013 x 10- 1 .4946 x 10-1 .4958 x 10- 1
22.2 .3244 x 10- 3

±1.897 x 10- 3  ±.3827 x 10- 3  +.3885 x 10- 3

.5037 x 10- 1 .4956 x 10-1 .4972 x 10- 1  .1026 x 10- 2

12.2
±1.0904 x 10- 2 ±.1073 x 10-2 ±.1089 x 10- 2

.4819 x 10- 1 .4962 x 10-1 .4974 x 10-1
7.0 .1867 x 10-2

±3.0412 x 10-2 ±.1941 x 10- 2 ±.1966 x 10- 2

TABLE II

Comparison of MLM with Eq. (10) and MLM with Eq. (12b) for
frequency estimation precision of a real sinusoid.

The true frequency is .025 Hz. See example 3.

SNR dB
7 5 0

method

.2313 x 10 - 1 .2215 x 10- 1 .3251 x 10 - 1
Eq. (10)

±.5199 x 10- 2 ±.6044 x 10- 2 +.5758 x 10-1

.2599 x 10-1 .3573 x 10-1 .8304 x 10- 1
Eq. (12b)

±.1921 x 10- 1 ±.4230 x 10- 1 +.8218 x 10-1

13
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IV. CONCLUSIONS

The ML method [1-2] for frequency estimation of

complex sinusoids is extended to treat real data. This

extension provides better estimation precision and computation

efficiency than the conventional approaches. The detection

problem(determining the number of sinusoids present in the

data) which is not addressed here can be handled easily based

on the M-ary generalized likelihood ratio test (8] using

by-products of the ML estimator.
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